

Projektnummer:	Projektledare:	Ombud:	Kvalitetsansvarig:	
12803611	Ola Nordblom	Ola Nordblom	Lars-Göran Gustafs-	
Projektnamn: Söderån – vattenstånd, Tölö Ängar Syd			Son	
Beställare:	Beställare kontaktperson:			
Sverigehuset	Anna Henriksson			

Introduction:

DHI Sverige AB received a task from Sverigehuset to perform calculations of characteristic water levels, i.e. Highest High level (HHV), Mean level (MV) and Lowest Low level (LLV) in a golf course by Söderån, Kungsbacka.

Method and result:

A simulation with the hydrologic model MIKE11 NAM and the hydraulic model MIKE11 HD (DHI, 2016) [2] was conducted to calculate the required water levels. Daily precipitation data was taken from Rossared station, using SMHI data base [1]. This station should be the most representative for the area of interest. Daily ambient air temperature was taken from Göteborg.

First, the hydrologic model MIKE11 NAM was used to simulate a period of the last 33 years in order to calculate the runoff in Söderån. Figure 2 shows the simulated hydrograph during the considered timespan.

Figure 1: Simulated discharges in Söderån over the last 33 years.

Then, hydraulic modelling using MIKE 11 HD was done for a period that covers minimum, average and maximum discharges. The discharge values are shown in Table 1. The corresponding water levels are shown in Table 2 at different model locations (chainages) within the area of interest. All elevations are reported in RH 2000.

In addition to the above three elevations, discharge and water level for a 100-Year rainstorm event (100 year return period) combined with normal sea water level is included in Table 1 and 2, respectively. These values have been calculated in a previous investigation by DHI in 2015 [3].

The area of interest (i.e. golf course by Söderån) is shown in Figure 2 [4].

The location of the calculation points (chainages) in MIKE11 HD model is illustrated in Figure 3.

GÖTEBORG Drakegatan 6 412 50 Göteborg Tel: 031 80 87 90

Fax: 031 15 21 20

STOCKHOLM Svartmangatan 18 Box 3287 111 29 Stockholm Tel: 08 402 12 80 VÄXJÖ Honnörsgatan 16 350 53 Växjö Tel: 0470 75 27 60 MALMÖ Södra Tullgatan 4

Figure 2: Outline of the golf course by the Söderån.

Figure 3: Location of calculation points (chainages) in the area of interest as described in MIKE11 HD model.

Table 1: HHQ, MQ and LLQ over 33 years and HHQ from 100-Year rainstorm

Discharge	[m3/s]
Lowest Low discharge(LLQ)	0.003
Mean discharge(MQ)	0.12
Highest High discharge (HHQ)	2.62
100-Year rainstorm	7.28

Table 2: HHV, MV and LLV over 33 years, and HHV for 100-Year rainstorm

Chainage [m]	HHV [m]	MV [m]	LLV [m]	100-Y Rainstorm [m]
96	2.12	1.19	1.1	3.3
530	2.12	1.1	0.8	3.3
950	2.11	1.1	0.8	3.3
1098	2.11	1.1	0.8	3.3

Conclusion

For the center point within the area of interest (chainage 530 m), the following characteristic water levels have been calculated based on a simulated period of the last 33 years:

HHV = 2.1 m MV = 1.1 m LLV = 0.8 m

The water level of 3.3 m for the 100-Year rainstorm event, which was calculated in a previous study [3], is included as a reference to highlight that water levels could be higher than the reported HHV during extreme rain events.

References:

- 1. http://opendata-catalog.smhi.se/explore/
- 2. <u>DHI</u> (2016). MIKE11 A modeling system for Rivers and Channels. User Guide. MIKE by DHI 2016.
- 3. DHI, Slutrapport Söderån. Översvämningsrisker längs Söderå, DHI, Växjö, 2015-09-21, till Kungsbacka kommun
- 4. Adopted from Norconsult[®] email of 02/11/2016, Göteborg, Sweden